Carlos Andres Ramirez
PhD. Computational Science Student

Advisors
Dr. Miguel Argaez
Dr. Leticia Velazquez

April 16, 2009

The University of Texas at El Paso
Objective

The notion of the **central path** plays an important role in the development of primal-dual interior-point algorithms.

Our objective in this work is to show that a related notion called the **quasicentral path (QCP)**, introduced by Argáez and Tapia [2, 3] in nonlinear programming, while being a less restrictive notion it is sufficiently strong to guide the iterates towards a solution of the Linear Programming problem.
Problem Formulation: Linear Programming Problem

Primal Problem (1)

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad x \geq 0
\end{align*}
\]

Where

- \(c, x \in \mathbb{R}^n \)
- \(b \in \mathbb{R}^m \)
- \(A \in \mathbb{R}^{m \times n} \)

Dual Problem (2)

\[
\begin{align*}
\text{max} & \quad b^T y \\
\text{subject to} & \quad A^T y + z = c, \quad z \geq 0
\end{align*}
\]

Where

- \(y \in \mathbb{R}^m \)
- \(z \in \mathbb{R}^n \)

\(A \) is full rank and \((m<n)\)
Optimally Conditions

KKT (Necessary and Sufficient) Conditions

\[F : \mathbb{R}^{n+m+n} \rightarrow \mathbb{R}^{m+n+n} \]

\[F(x, y, z) = \begin{cases}
Ax-b \\
A^T y + z - c \\
XZe \\
(x, z) \geq 0
\end{cases} = 0 \quad (3) \]

Where \(X = \text{diag}(x), \ Z = \text{diag}(z), \) and \(e = (1, \ldots, 1)^T \in \mathbb{R}^n \)

Remark: Newton's method applies to KKT Conditions preclude before obtain a solution of the problem.

Perturbed KKT Conditions

For \(\mu > 0, \)

\[F_\mu : \mathbb{R}^{n+m+n} \rightarrow \mathbb{R}^{m+n+n} \]

\[F_\mu (x, y, z) = \begin{cases}
Ax-b \\
A^T y + z - c \\
XZe - \mu e \\
(x, z) \geq 0
\end{cases} = 0 \quad (4) \]

Property: Under some assumptions for each \(\mu > 0, \) the perturbed system has a unique solution \((x(\mu), y(\mu), z(\mu)) \). Moreover, \((x(\mu), y(\mu), z(\mu)) \) tends to a solution \((x, y, z) \) to the primal and dual problem as \(\mu \rightarrow 0. \)
Fundamental Properties

Property 1:

\[e_p^k = b - Ax_k = (1 - \alpha_k) e_p^{k-1} = \prod_{j=1}^{k} (1 - \alpha_j) e_p^0 \]
\[e_d^k = c - A^T y_k - z_k = (1 - \alpha_k) e_d^{k-1} = \prod_{j=1}^{k} (1 - \alpha_j) e_d^0 \]

\[0 < \alpha_j \leq 1 \]

Property 2 (see [1]):

If \[\| e_d^0 \| \leq \| e_p^0 \| \] then \[\| e_d^k \| \leq \| e_p^k \| \] \[\forall_k \]

This means: \[e_d = 0 \] if \[e_p = 0 \]
Globalization Strategy

Central Path (Classical Approach)

- $Ax - b = 0$
- $A^T y + z - c = 0$
- $XZe - \mu e = 0$
- $(x, z) \geq 0$

QCP (Our Approach)

- $Ax - b = 0$
- v/s
- $XZe - \mu e = 0$
- $(x, z) \geq 0$
We propose to follow the QCP as a globalization strategy using as initial point \((x_0, y_0, z_0)\) such that \(e_d^0 \leq e_p^0\).

In this situation, then we can remove the dual condition from the central path, and consider the QCP as a central region to be followed for obtaining a solution of the primal and dual problems simultaneously.

To make progress to the QCP, we present a new merit function.
Progress to the QCP: Sufficient Decrease

Merit Function
To progress to the QCP we use the following function

For $\mu > 0$,

$$
\Phi_\mu : \mathbb{R}^{n+n} \rightarrow \mathbb{R}
$$

$$
\Phi_\mu (x, z) = \frac{1}{2} \|Ax - b\|^2 + \sum_{i=1}^{n} (x_iz_i - \mu \ln(x_iz_i))
$$

Property: Descent direction

$$
\nabla \Phi_\mu (x, z)^T \begin{pmatrix} \Delta x \\ \Delta z \end{pmatrix} = -\left(\|Ax - b\|^2 + \|W(xZe - \mu e)\|^2 \right) < 0
$$

This means at each Newton direction $(\Delta x, \Delta z)$ we can progress toward the QCP
The Algorithm

Step 1. Consider an initial point \(x>0, z>0, y=0 \) such that \(\|e_d\| \leq \|e_p\| \)

Choose \(\mu>0, \gamma, \tau, \sigma \in (0,1) \)

Set \(e_d = c-z, \ e_p = b-Ax, \ e_c = \mu e - XZe \)

Step 2. Newton direction. Solve the linear system for \((\Delta x, \Delta y, \Delta z) \)

\[
\begin{pmatrix}
A & 0 & 0 \\
0 & A^T & I \\
Z & 0 & X
\end{pmatrix}\begin{pmatrix}
\Delta x \\
\Delta y \\
\Delta z
\end{pmatrix} = -\begin{pmatrix}
Ax - b \\
A^T y - c - z \\
XZe - \mu e
\end{pmatrix}
\]

Step 3. Forcing positivity for \(x \) and \(z \). Calculate \(\tilde{\alpha} = \min \{1, \tau \hat{\alpha} \} \)

Where \(\hat{\alpha} = \frac{-1}{\min(X^{-1}\Delta x, Z^{-1}\Delta z)} \)

Such that \(x + \tilde{\alpha} \Delta x > 0 \) and \(z + \tilde{\alpha} \Delta z > 0 \)
Step 4. Progress to the QCP (Line search). Find $\alpha = \left(\frac{1}{2} \right)^t \tilde{\alpha}$ where t is the smallest positive integer such that

$$\Phi_\mu \left(x + \alpha \Delta x, z + \alpha \Delta z \right) \leq \Phi_\mu \left(x, z \right) + 10^{-4} \alpha \nabla \Phi_\mu \left(x, z \right)^T \left(\Delta x, \Delta z \right)$$

Step 5. Update

$$x = x + \alpha \Delta x > 0 \quad e_p = (1 - \alpha) e_p$$
$$z = z + \alpha \Delta z > 0 \quad e_d = (1 - \alpha) e_d$$

Step 6. Proximity to QCP. If

$$\left(\| e_p \|^2 + \left\| (XZ)^{-1/2} (XZe - \mu e) \right\|^2 \right) \leq \gamma \mu$$

Then go to Step 7. Else, set $e_c = \sigma \mu e - XZe$ and go to step 2.

Step 7. Stopping criteria. If

$$\left(2 \| e_p \| + x^T z \right) \left(1 + \| p \| \right) < \varepsilon$$

then stop. Else, update μ, set $e_c = \sigma \mu e - XZe$ and go to Step 2.
Numerical Results

Problem No 1 "25FV47" taken of the Netlib Test Problems:
Problem No 5 “agg” taken of the Netlib Test Problems:
Problem No 65 "scorpion" taken of the Netlib Test Problems:
Problems were taken of the Netlib Test Problems:
Problems were taken of the Netlib Test Problems:

<table>
<thead>
<tr>
<th>Problem Name</th>
<th>m</th>
<th>n</th>
<th>Iter</th>
<th>CPU time</th>
<th>Primal residual</th>
<th>Iter</th>
<th>CPU time</th>
<th>Primal residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>scagr7</td>
<td>129</td>
<td>185</td>
<td>19</td>
<td>0.15</td>
<td>8.17E-09</td>
<td>14</td>
<td>0.12</td>
<td>2.08E-11</td>
</tr>
<tr>
<td>scfmx1</td>
<td>322</td>
<td>592</td>
<td>21</td>
<td>0.32</td>
<td>6.77E-09</td>
<td>19</td>
<td>0.27</td>
<td>8.54E-15</td>
</tr>
<tr>
<td>scfmx2</td>
<td>644</td>
<td>1184</td>
<td>21</td>
<td>0.52</td>
<td>9.39E-09</td>
<td>21</td>
<td>0.47</td>
<td>1.96E-14</td>
</tr>
<tr>
<td>scfmx3</td>
<td>966</td>
<td>1776</td>
<td>21</td>
<td>0.72</td>
<td>5.93E-09</td>
<td>21</td>
<td>0.66</td>
<td>1.33E-13</td>
</tr>
<tr>
<td>scorpion</td>
<td>375</td>
<td>453</td>
<td>18</td>
<td>0.2</td>
<td>2.60E-13</td>
<td>15</td>
<td>0.16</td>
<td>3.25E-13</td>
</tr>
<tr>
<td>scrs8</td>
<td>485</td>
<td>1270</td>
<td>25</td>
<td>0.41</td>
<td>6.56E-09</td>
<td>24</td>
<td>0.37</td>
<td>4.73E-12</td>
</tr>
<tr>
<td>scsd1</td>
<td>77</td>
<td>760</td>
<td>11</td>
<td>0.17</td>
<td>5.82E-09</td>
<td>9</td>
<td>0.11</td>
<td>8.07E-09</td>
</tr>
<tr>
<td>scsd6</td>
<td>147</td>
<td>1350</td>
<td>11</td>
<td>0.21</td>
<td>8.26E-09</td>
<td>11</td>
<td>0.18</td>
<td>1.23E-09</td>
</tr>
<tr>
<td>scsd8</td>
<td>397</td>
<td>2750</td>
<td>10</td>
<td>0.28</td>
<td>5.06E-09</td>
<td>11</td>
<td>0.31</td>
<td>1.43E-11</td>
</tr>
<tr>
<td>sctap1</td>
<td>300</td>
<td>660</td>
<td>19</td>
<td>0.23</td>
<td>6.53E-09</td>
<td>17</td>
<td>0.19</td>
<td>4.53E-13</td>
</tr>
<tr>
<td>sctap2</td>
<td>1090</td>
<td>2500</td>
<td>20</td>
<td>0.64</td>
<td>6.27E-09</td>
<td>19</td>
<td>0.53</td>
<td>5.03E-13</td>
</tr>
<tr>
<td>sctap3</td>
<td>1480</td>
<td>3340</td>
<td>18</td>
<td>0.72</td>
<td>3.15E-09</td>
<td>18</td>
<td>0.66</td>
<td>1.63E-14</td>
</tr>
<tr>
<td>share1b</td>
<td>112</td>
<td>248</td>
<td>24</td>
<td>0.23</td>
<td>6.60E-09</td>
<td>22</td>
<td>0.2</td>
<td>5.28E-15</td>
</tr>
<tr>
<td>share2b</td>
<td>96</td>
<td>162</td>
<td>17</td>
<td>0.14</td>
<td>5.68E-09</td>
<td>13</td>
<td>0.1</td>
<td>9.01E-13</td>
</tr>
<tr>
<td>ship04l</td>
<td>356</td>
<td>2162</td>
<td>14</td>
<td>0.36</td>
<td>7.29E-09</td>
<td>14</td>
<td>0.32</td>
<td>3.69E-14</td>
</tr>
<tr>
<td>ship04s</td>
<td>268</td>
<td>1414</td>
<td>17</td>
<td>0.3</td>
<td>5.88E-09</td>
<td>14</td>
<td>0.26</td>
<td>1.09E-10</td>
</tr>
<tr>
<td>ship08l</td>
<td>688</td>
<td>4339</td>
<td>17</td>
<td>0.74</td>
<td>4.93E-09</td>
<td>16</td>
<td>0.66</td>
<td>1.13E-12</td>
</tr>
<tr>
<td>ship08s</td>
<td>416</td>
<td>2171</td>
<td>16</td>
<td>0.41</td>
<td>5.86E-09</td>
<td>15</td>
<td>0.34</td>
<td>2.98E-13</td>
</tr>
<tr>
<td>ship12l</td>
<td>838</td>
<td>5329</td>
<td>19</td>
<td>0.97</td>
<td>3.11E-09</td>
<td>18</td>
<td>0.9</td>
<td>5.81E-11</td>
</tr>
<tr>
<td>ship12l</td>
<td>838</td>
<td>5329</td>
<td>19</td>
<td>0.98</td>
<td>3.11E-09</td>
<td>18</td>
<td>0.9</td>
<td>5.81E-11</td>
</tr>
<tr>
<td>stocfor1</td>
<td>109</td>
<td>157</td>
<td>20</td>
<td>0.15</td>
<td>7.47E-09</td>
<td>16</td>
<td>0.14</td>
<td>2.39E-11</td>
</tr>
<tr>
<td>stocfor2</td>
<td>2157</td>
<td>3045</td>
<td>21</td>
<td>0.96</td>
<td>9.57E-09</td>
<td>21</td>
<td>0.9</td>
<td>1.85E-10</td>
</tr>
<tr>
<td>stocfor3old</td>
<td>16675</td>
<td>23541</td>
<td>35</td>
<td>14.37</td>
<td>6.57E-09</td>
<td>35</td>
<td>14.16</td>
<td>2.06E-09</td>
</tr>
<tr>
<td>truss</td>
<td>1000</td>
<td>8806</td>
<td>22</td>
<td>1.85</td>
<td>2.60E-09</td>
<td>19</td>
<td>1.51</td>
<td>3.69E-11</td>
</tr>
<tr>
<td>wood1p</td>
<td>244</td>
<td>2595</td>
<td>22</td>
<td>3.29</td>
<td>7.71E-09</td>
<td>19</td>
<td>2.77</td>
<td>3.23E-09</td>
</tr>
<tr>
<td>woodw</td>
<td>1098</td>
<td>8418</td>
<td>31</td>
<td>3.39</td>
<td>7.81E-09</td>
<td>28</td>
<td>2.84</td>
<td>6.67E-10</td>
</tr>
</tbody>
</table>
The Notion of the Quasicentral Path in Linear Programming

References

Acknowledgments

The authors thank the financial support from the Computational Science Program and ARL Grant No W911NF-07-2-0027.

The authors also acknowledge the office space provided by the Department of Mathematical Sciences.